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LElTER TO THE EDITOR 

A non-Gaussian single-mode squeezed state of the simple 
harmonic oscillator 
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Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark 

Received 30 June 1988 

Abstract. A unitary operator U,, which generates a single-mode squeezed state of the 
simple harmonic oscillator from the vacuum, is discussed. The states generated by U, are 
of the form $,,(a) - X,, a" In).  eo( a) are not minimum-uncertainty states but have a small 
value for the uncertainty product even for large values of the mean number of quanta A;  
for example, var(q) var( p )  - 0.74 for A = lo6. 

Squeezed coherent states of the electromagnetic field have been discussed extensively 
in the literature in quantum optics [ 1-41. Several reports on the successful experimental 
generation and detection of squeezed light have appeared [ M I .  The possibility of 
detecting squeezed states of other bosonic systems has also been raised recently [9]. 
The quantum states of the simple harmonic oscillator (SHO) are relevant not only in 
the analysis of the electromagnetic field but also in the study of molecular, nuclear 
and solid state systems. The discussion of production and detection of squeezed states 
of the oscillator has relevance in many areas of physics. 

Theoretical attention on single-mode squeezed states of light has until now centred 
on Gaussian wavepacket solutions of the Schrodinger equation for the SHO. It is well 
known that the coherent states and the squeezed coherent states are Gaussian and are 
the only possible minimum-uncertainty states of the SHO [4]. The mechanism for the 
detection of squeezed states in the laboratory, however, does not depend upon whether 
the state under observation is a minimum-uncertainty state or not. It is therefore 
possible to extend the discussion of squeezed states beyond Gaussian wavepackets. 
In this letter, states of the SHO which are not minimum-uncertainty states but have, 
nevertheless, squeezed variances for certain operators and are generated from the 
vacuum by the application of a unitary operator, are discussed. Planck's constant h 
and the frequency w of the SHO are set equal to 1 for the sake of simplicity of notation. 

A single mode of a free bosonic system may be described by the creation and 
annihilation operators a+ and U of the SHO which satisfy the commutation relation 
[a, a+] = 1. The Hamiltonian for the SHO is H = N + a  in which N = a+a is the number 
operator. The oscillator energy eigenstates are denoted by In), n = 0, 1,2, . . . , where 
NI n) = nl n). The Hermitian linear combinations 

(1) 
1 

p =  - - ( a -  a+) 
1 

J 2  
q =- ( a - t a ' )  

J 2  
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satisfy the commutation relation [q,  p] = i. In the absence of interactions, a pure state 
of the form 

will evolve in time as 

If the coefficients b, are of the form 

b, = C, exp(incp) c, = Ib,l (4) 

var(X) = (+1x21+>-(+1x1+)2 ( 5 )  

then the definition of the variance of an operator X in the state + given by 

and the relations 

aln)  =&In - 1) a+ln) = m ( n  + 1) 

may be used to give 

var(q) =$- F +  G cos2( t - cp) 

and 

var( p )  = 4 -  F +  G sin2( t - cp) 

where 

(7) 

and 

\ n = o  m = O  

The coherent states +, correspond to the choice C, = cxfl/m, for which F and G 
vanish and the variances of q and p are time independent and have the value $. +c is 
a minimum-uncertainty Gaussian wavepacket. The squeezed coherent states +, are 
also Gaussian wavepackets. The Gaussian squeezed vacuum state corresponds to 
the choice of coefficients 

m = 0, 1,2, . . . 
with ( p 2 -  v') = 1. This choice of coefficients gives F = -v( v +  p )  and G = -2vp. 
Hence 

c,, = ( -v /p)"(2m - I)!!/- C 2 m + l =  0 

var(q)so=$(p2+ v2-2/1v cos2t) (11) 

and 

var(p)so=i(pu2+ v 2 + 2 p v  cos 22). 
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It is evident that for t = n7r/2, n = 0 , 1 , 2 , .  . . , the product of the variances of q and 
p equals a, which is the value of the variance product for a minimum-uncertainty 
wavepacket. The time evolution of the variances of q and p shows that at any instant 
of time the variance of one of the coordinates ( q , p )  can dip below i, which is the 
value of the variance for a minimum-uncertainty state, and will periodically rise above 
f when the variance of the conjugate coordinate begins to fall below f so that the 
uncertainty relation var( q )  var( p )  3 4 is not violated. It is the possibility for the variance 
to dip below the value for the ground state of the SHO, which is a minimum-uncertainty 
state, that gives the squeezed coherent states their importance. The experimental 
method for the detection of squeezed light is the homodyne detection scheme [3, lo]. 
In this mechanism for observing squeezing the magnitude of the variance of the 
conjugate partner to the coordinate under observation seems to be irrelevant and it 
seems immaterial whether the product of the variance equals 4 or not. 

It is possible to extend the discussion of squeezing beyond squeezed coherent states 
and consider non-Gaussian states of the SHO that might also exhibit squeezing of the 
variance of an operator. In the infinite parameter space spanned by the set of coefficients 
b, there may be many choices of values of b, that could lead to the squeezing of the 
variance of an operator. However, among all such possible squeezed states those that 
can be shown to be generated by a unitary operator deserve special consideration 
because the existence of a unitary operator can often lead to a possible mechanism 
for generating that state from the vacuum. For example, it is the unitary time evolution 
of the vacuum under the influence of appropriate interaction Hamiltonians which 
makes it possible to produce coherent and squeezed coherent states of light in the 
laboratory. Motivated by such reasoning, a unitary operator, which generates a 
squeezed state from the vacuum, will now be considered. 

For the SHO it is possible to define operators [ l l ,  121 R and R' such that 

R l n ) = ( n ) l n - l )  R+ln) = ( n  + 1)ln + 1). (13) 

R and R' may be related to Hermitian operators S and C [13-151, whose expectation 
values for coherent states correspond in the large ( N )  limit to sin 8 and cos 8, respec- 
tively, 8 being the phase of the classical field. The operators S and C may be written 
in the form 

S = (P - P+)/2i c = (P + P+) /2  (14) 

where 

Pln) = In - I) n # O  

PIO) = 0 P+ln)  = In + 1). 

R and R +  are related to S, C, P and P+ by 

R = PN = ( N +  1 ) P =  a m = J ? v T c i a  

and 

R +  = NP+ = P'( N + 1) = m a +  = a + J m .  

Operation on the number states enables the establishment of the equivalence of the 
different ways of representing R and Rt.  



L1068 Letter to the Editor 

It is easy to show that R, R+ and ( N + $ )  satisfy the commutation relations of the 

[R, N + & ]  = R [R+, N+$]=-R+ [R, RC]=2(N+$) .  (18) 

SU(1,l)  algebra 

From R and R+ the unitary operator 

UR = exp( y eisRf- y e-"R) 

may be constructed. By using standard methods [16,17], U, may be simplified to 

U, = [exp(R+ e'' tanh y)](sech y)2N+'[exp(-R e-" tanh y)]. (20) 

The state generated by the action of U, upon the vacuum is given by 
m 

$o= URlO)=(sech y )  (eis tanh y)"ln) .  
n = O  

The pure state $o of the SHO is a linear superposition of number states with coefficients 
arranged in a geometric progression. $o is an eigenstate of a generalised annihilation 
operator. Generalised annihilation and creation operators B and B+ analogous to 
those defined for the squeezed coherent states may be identified through a Bogoliubov 
transform and calculated using standard techniques [ 181 to give 

B = URRUi = R cosh' y + R+ sinh2 y e"' - (2N+ 1) e" sinh y cosh y (22) 

and 

B + =  U R R + U i =  R+cosh2 y+Rsinh'  ye-2is-(2N+1)e-issinh ycosh y. 

It is clear that 

(23) 

SUR I n) = (n) UR In - 1) (24) 

B+ UR(n) = (n + 1) URln + 1). (25) 

[B ,  B+]=(2N+1)  cosh2y-(e-"R+eisR+) sinh2y. (26) 

and 

The transformed operators B and B+ satisfy the commutation relation 

Using (20) and (25), E +  may be successively applied to generate the state 

(27) 
1 
m !  I+m)= uRlm)=-(B+)ml$O). 

qbm is a state with m generalised quanta and is explicitly given by 

n! 
j = O  ( n - J ) ! j !  ( m - j ) ! j !  

(28) 

00 

4, =sech y c (eis tanh Y ) ~ - " '  (sech' y)'(-tanh' y)'"-j 
n =O 

where k is the smaller of (m, n). 

show that 
It is easy to establish that $o is a squeezed state. Equations (3), (4), (9) and (21) 

m 

F=sech2 y c (tanh y)2n~'{[(n+l)(n+2)]1'2-(n+1)}.  (29) 
n -0 
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F is positive definite since the terms in curly brackets always give positive contributions. 
Examination of (7) and (8) shows that the positivity of F guarantees that as a function 
of time either var( q )  or var( p )  can dip below f. Such a squeezing occurs for all values 
of y. Hence $o is a squeezed vacuum state. 

The expectation value of an operator U, which is diagonal in the number space, is 
given by 

This expectation value equals the thermal average calculated with a density matrix of 
the form 

X 

p = (1 -e+) e-flPln)(nl p = 1 /KT (31) 
f l = O  

if 

e-p = tanh2 y. (32) 

This equivalence holds for any diagonal operator U. In particular, for the number 
operator N the variance in the state Jl0 is given by 

var(N) = A(  A + 1) 

A = ( lcl0l NI t,b0) = sinh2 y. 

(33) 

where A, the mean number of quanta, is related to y by 

(34) 

Because of the equivalence of this variance to a thermal average, the number statistics 
in the pure state t,b0 is indistinguishable from that for a thermal density matrix. Similar 
behaviour has been noted in the discussion of parametric interactions that give rise to 
two-mode squeezing [ 191 and also in a discussion of thermofield analysis of squeezing 
[ 181. However, for operators which are not purely diagonal in the number space, the 
expectation values in the pure state $o are different from those for a thermal density 
matrix. For example, for the non-diagonal phase-related operators S and C the 
variances in the state $o can be shown to have the time-independent value given by 

var( S) = var( C )  =a( A + I)-'  (35) 

while for a thermal density matrix 

var (S) ,=var (C) ,=+(~i+  l ) ( f i+  I)-' .  (36) 

It is possible to estimate the extent of squeezing of the state $o as a function of y. 

(37) 

Equation (8) shows that the minimum value of the variance of p is given by 

var( p)min = 4 - F. 

Using (29) and (34), it is possible to show that 

var( = f - ( l + + l n ( A + l )  
( A + l )  

X 

m = l  
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For A > 1 accurate estimates of var( 
series. The asymptotic behaviour for large A is given by 

can be made using the first few terms of the 

A-m lim var(p),,, = (1/8A) In f i  

A - ‘ x  lim (var(p),i,)s = 1/8A. 

(39) 

showing that var( P),,,~, + 0 for f i  + CO. For a squeezed coherent state the corresponding 
limiting value is given by 

(40) 

For f i  >> 1 it is also possible to develop an asymptotic formula for the sum of the 
variances in the form 

(41) 

The proofs of (38) and (41) will be given in a future publication. For squeezed coherent 
states the variance sum equals (2f i  + 1) for all values of fi. It can be shown that for 
all values of A the sum of the variances of q and p in the state is less than that for 
squeezed coherent states with the same 3. From (38) and (41) it is easily shown that 

var(p) +var(q) = ( 2 ~  + 1)(1 -an-) +o(A-’). 

!im var( p )  var( q )  = a( 1 - tn-) In f i  (42) 
n-m 

which is a slowly varying function of A. The variances of p and q may be numerically 
evaluated for all values of y. The variance product equals a for y = 0 and begins to 
rise slowly as y increases. Equation (42) shows that even for f i  = l o 6  the variance 
product is only 0.74, which is approximately three times the value for the minimum- 
uncertainty wavepackets. Such a low value of the variance product for such a high 
value of A together with the squeezing of variances for all values of A clearly shows 
that the states I)~( y )  belong to a special category. Among all possible linear combina- 
tions of number states, the Gaussian wavepackets have a special status because of 
their well known properties. The states y )  generated by U, also belong to a special 
class because of their properties reported in this letter. 

To summarise, it has been shown that a simple wavepacket made up of a superposi- 
tion of number states with coefficients in a geometric progression can be generated by 
the application of a unitary operator on the vacuum state. The state (cl0 so produced 
exhibits squeezing of (q, p )  for all values of the mean number of quanta. The number 
statistics for the state is indistinguishable from that for a suitably chosen thermal 
density matrix. However, for non-diagonal operators such as q and p and the phase- 
related operators S and C, the variances in the pure state (cl0 are different from those 
for a thermal density matrix. Even though i,b0( y )  are not minimum-uncertainty states, 
the uncertainty product is quite small even for very large values of the mean boson 
number. A full analysis of the results reported here will be presented in a future 
publication. 

I thank K MIdlmer for interesting discussions and K Taulbjerg for his hospitality at 
the Institute of Physics. 
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